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External fields in attractor neural networks with different 
learning rules 

A Rau,  D Sherrington and K Y M Wong 
Department of Theoretical Physics, University of Oxford, Oxford OX1 3NP, UK 

Received 12 July 1993 

Abstract .  The effects of external fields on the retrieval properties of highly dilute 
attractor neural networks with general classes of learning rules are  examined. It 
can be shown that extemal fields increase basins of attraction making even perfect 
retrieval possible for relatively high loading. The application of different classes of 
noise distributions on the stimulus field indicates ?hat certain first-order transitions 
oeeuring are peculiarities of the type of noise. Optimally adapted networks in the 
presence of e x t e m l  fields extend the critical loading above which perfect retrieval 
is impossible. In the presence of external fields in the hightemperalure regime, 
Hebb networks also retrieve better than rules with more optimal performances at 
low temperatures. 

1. Introduction 

Robustness against noise disruption is one of the major features of attractor neural 
networks. I n  the  presence of a small amount of noise, either due to an external 
temperature or  t o  the mutual disturbance of the patterns, the system is still able to 
drift towards a fixed point or limit cycle. 

Originally only specific learning rules were studied to investigate the properties 
of these networks. The  work of Gardner [l] made it possible to investigate optimal 
properties of networks without reference to a particular learning rule. She was able 
to show tha t  in a highly dilute network the mayimum storage capacity is 2, but tha t  
at far lower loading (a = 0.42) the hasins of attraction already s ta r t  to shrink. This 
articulates itself in the appearance of unstable fixed points, which often hide the 
attractor with high overlap if we s ta r t  with a low initial overlap. In this paper we will 
investigate a method of widening the basins of attraction through the application of 
external stimuli fields. 

External stimuli have been studied previously by different groups [2-5], with the 
motivation either to imitate more realistic physiological situations, or t,o improve the 
ability of the network to retrieve. However, previous studies have considered either 
only particular learning rules or only specific noise distributions on the external stim- 
ulus field, Here we will consider different learning rules which represent linuting cases 
of certain universality classes [6] near saturation, i.e. when the volume of solutions 
in the space of interactions shrinks to zero. The  noise distributions for the external 
stimulus field will also be taken from structurally different types of distributions. This 
analysis will enable us  to gain insight into some general results accompanying the noise 
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spectrum in external fields. We will show that certain first-order transitions occurring 
are peculiarities of the noise distributions. 

We also analyse an optimally adapted neural network [7,8] in the presence of an 
external stimulus field. For this we consider a network which is optimally adapted 
in the presence of training noise and an external stimulus field. Thus the analysis of 
such a network gives the hest possible attractor overlap, provided we have specified 
the noise distribution on the external stimulus field. 

In addition we will investigate the influence of an external temperature on the 
retrieval process. Learning rules such as the Hebb rule yield higher storage capacity 
a t  high temperatures in the absence of external fields, when compared with learning 
rules more optimized at  zero temperature, such as the one by Gardner. It turns nut 
that similar phenomena exist in the presence of external fields; the Hebb rule retrieves 
better than the pseudcAnverse rule a t  high temperatures, although the converse is 
true at  low temperatures. 

A Rau, D Sherringlon and K Y M Wong 

2. The model 

2.1. The general dynamical equations 

Guided by our previous work [4] on external stimuli we consider a highly diluted 
network, similar in structure to that of Derrida et a/  [9], but with the synaptic weights 
prescribed by more general classes of learning rules. Dilution allows us to extend the 
first step dynamics by Kepler and Abbott [lo] to any time step, since the high dilution 
limit enables us to neglect dynamical site correlations. 

Using the approach of [lo] we can determine the macroscopic overlap of the system 
after one time step provided we know the aligning field distribution in the system. 

As in our previous work we  consider the storage of a set of p binary patterns { E r }  
in a dilute neural network with parallel dynamics introduced through the updating 
rule 

where hfX' is the external stimulus field, C the average number of connect.ions between 
the N neurons and Si(t) the state of the binary McCulloch-Pitts neuron at  site i and 
time t .  The nodes feeding neuron i are given by j = i,, . . . , i,. The interactions 
satisfy the spherical constraint J$  = C. We will he interested in systems where 
C + cc and 

I n N  
lim - - m  - 

N-m I n C  

which is the criterion for high dilution [ll].  
The stimulus field hf"' = hi[q] is a funct,ioual of a certain noise distribution q.  

The sign of the field is assumed to have an average non-zero overlap mo with one of 
the patterns we want to retrieve, say pattern one. This overlap is of course equivalent 
to the overlap of the initial configuration {Si(t = 0)} with {.$} and cont'ains the 
information about how many of the bits in the field agree on average with the pattern. 
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Thus, during the dynamical evolution of the system the external field will persistently 
support the retrieval of one pattern. 

Following the work of [l, 10,121 we calculate the averaged output overlap gi at  
node i for a n  initial overlap mo. I t  turns out that this quantity can be expressed in 
terms of the aligning field At which is given by 

(Henceforth we drop the subscript i for convenience.) Since the local field for pattern 
one is Gaussian distributed with a mean of (moA' + < ' h [ q ] )  and width of m, 
the average output overlap can be written as 

9,. (A ' , h q ] ) )  [ = / D r s g n  ( ( m o A ' + € ' h [ r l ] ) + ~ z )  

where Dz = exp(-z2/2)dz/&. 
l h e  dynamics in highiy connected networks is stili a prohiem ior more than the 

first few steps [13]. Thus, below we restrict ourselves to the consideration of a highly 
dilute network. The overlap of the system with pattern one at  time t + 1 can he given 
recursively in terms of the overlap at  time t 

-1 

Here (. . .)? denotes the average over the noisy external field and (. , .),, represents 
averaging over the aligning field distribution p ( A )  which can be determined via (3) 
using the quenched distribution of pattern one. 

As an aside we mention here that  the deterministic dynamics of (1) can be replaced 
by finite-temperature dynamics using not a step but a sigmoid updating function. It 
can easily be shown [ll] that the general dynamical rule S ( t + l )  = (sgn (h to t ( t )  + r))7 
reduces to Glauber dynamics for p ( r )  = @/2[c0sh(@r)]-~; p ( r )  is the distribution 
against which we average. We shall instead use a Gaussian distribution [14] for p ( r )  
of width (temperature) T and centred around 0. The only change i n  (5) resulting from 
the introduction o f T i s  that [2(1-m2(t))]'/* must he replaced by [2(1-m2(t)+T2)]1/2. 
Later en we ~ i ! l  zni!yse the inP.r?ence of T > 0 i n  R~KCP. 

2.2. The different aligning f i e l d  distributions 

Kepler and Abbott [lo] classified the aligning field distributions of different synaptic 
prescriptions into certain universality classes. We restrict our considerations here to 
the universal behaviour near saturation. 

diffi.iefi&bje in the 
region [n,+m] and vanishes outside this region then the aligning field distribution is 
identical to the one for the Gardner optimized learning rule, which is 

If the E pi jor i  dijtflbGtiGii of : j ig i i ig  fie!& i s  boiiiided 



316 

where n is the stability determining a through 

A Rau, D Shewington and IC Y M Wong 

Two other learning rules in Kepler and Abbott's classification scheme of univer- 
sality classes are the Hebbian and pseudo-inverse learning rules. The pseudo-inverse 
matrix [15,16] yields an aligning field distribution of 

p p ( A )  = 6(A - d m )  (8) 
whereas the Hehb learning rule leads to a Gaussian distribution [lo] centred around 
I/+, i.e. 

(9) 
1 2 p H ( A )  = - exp[-1/2 (A - 1 / 4  1. 6 

A further motivation for considering a Gaussian distribution is that, as Wong and Sher- 
rington [8] have recently shown, the dilute Hopfield network with IIebbian synapses 
gives the maximum storage capacity a, = 2/[7r(l+T2)] in the high-temperature regime 
(T > 0.38) provided no external field is present. 

Due to the universal classes they represent, these three aligning field distributions 
are particularly suited to investigate general properties of external stimuli. 

2.3. The noise i n  the stimulus 

A perfect stimulus field would have the form h<' where h is an arbitrary field strength. 
Since, however, we want t o  consider only fields which have the same noisy overlap 
with one pattern as the initial configuration of the system, we hate to introduce noise 
on the stimulus field. Here we can consider highly singular (6-like) and continuous 
distributions. 

For the singular distribution we consider a field which is h c l  with probability a1 
and eh<' with probability 1 - a l ,  where z is an arbitrary factor less than one. Relative 
to pattern one the external field distribution is 

p s ( h e x t )  = al 6(hext  - he') + 0 ,  6(hext - eh<') (10) 

where al and a, are chosen such that  the average overlap of the stimulus field with 
the pattern is mo, i.e. a I  = (mo-e) / ( l -z)  and a, = 1-al.  Equation (10) reduces to 
discrete noise for z = -1 and hidden units for z = 0 in [2]. We will consider primarily 
these special cases but also analyse how z influences the retrieval in general. 

The continuous noise distribution is taken to be h((' + q)  where q is Gaussian 
distributed with zero mean and width 6. The distribution of the external field relative 
to pattern one is thus given by 

1 (hext - h<') 
p G ( h e x t )  = - 6 6  (- 262 

where the overlap mg of the sign of the field with pattern one is ensured via 6 = 
1/[Jz erf-'(mo)]. 

The factors h in (10) and (11) are arbitrary and thus not yet comparable. If 
however we want  to compare discrete and Gaussian noise we have t o  ensure that (10) 

same width. This necessitates a rescaling of the h in (11) by a factor 
has  been done in all figures. 
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2 .4 .  The final dynamical equations 

The dynamics of the system is given after performing the various averages by 

m(t + 1) = f ( m ( t ) ) .  

In the case of the Hebbian learning rule with singular noise we can show that 

For c = - 1  this result reduces to the one given in [4], where we remark that the field 
strengths h here and in [4] vary by a factor of fi which is a result of the different 
normalizations of the interaction matrices. Since h is an arbitrary factor this has of 
course no consequences. For Gaussian noise we get 

The pseudc-inverse learning rule gives a dynamical function for singular noise of 

and for Gaussian noise yields 

For the Gardner learning rule we get 

for singular noise and 

for Gaussian noise. Equation (7) again relates R and a. The special case of equations 
(15) and (17) for c = -1 has independently been studied by Engel et al  [5 ] .  
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2.5. Opfimally adapted networks 
Following the work of Wong and Sherrington [7,8] we consider tmining w i f h  noise to 
enhance memory associativity for retrieval in the presence of a noisy stimulus field. We 
optimize the averaged output overlap gf at node i of the stored patterns { E r ] .  In [SI 
the principle of adaptation was developed. The idea is that when a system optimizes 
its performance in a training environment, then its performance is optimized in the 
same retrieval environment. 

As we want to retrieve noisy patterns in the presence of an external stimulus field, 
we thus also train the system in the same surrounding. In (4) we derived the output 
overlap gm,(A’, h,[q]) for an initial (training) overlap m, and an external (training) 
field h,[q] to be 

A Rau, D Sherrington and h’ Y M Wong 

We start by maximizing the output overlap for the first time step, which is equivalent 
to optimizing the performance function C = E,, g(A”). Following the reasoning of 
[8] we can determine the average maximum performance per pattern JdAp(A)g(A). 
The aligning field distribution is given by p(A) = J D t  6(h - X ( t ) ) ,  where X(t) is the 
inverse function of 

f ( X )  = A - 7g’(X). (20) 
The parameter 7 is related to 01 by 

When X(t) is not single valued we take the X which gives the largest value of 
(g(X) - (A - t)2/27), which is equivalent to a Maxwell construction. 

As we have now specified the training procedure we define the retrieval. The 
retrieval output f,,(m) is given by 

where m is the input overlap. Using the principle of adaptation which is formulated 
more precisely in [SI we optimize the retrieval performance of our system by choosing 
the initial overlap and the external field in the training and retrieving stages t.o be the 
same. 

As we are interested here in dilute networks, where the complete dynmnics is 
known, the fixed-point equation we finally want to solve self-consistently is given by 

m* = JDte r f  ( m*X,.(f)+ h 
&(l - (me)* + h26*) 

(23) 

Here Gaussian noise on the stimulus field was applied, since i t  shows less ‘artificial’ 
phase transitions than singular noise. 

We note a strong similarity between (23) and thc corresponding equadion of [SI in 
the presence of Gaussian retrieval noise but no stimulus field; in the latter case h6 
is replaced by the retrieval temperature T and there is no h in the numerat,or of the 
argument of the error function. 

The stable fixed points of (23) give optimal retrievers, the unstable fixed points 
give the optimal basin boundaries of adaptation. 
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3. Results 

3.1. The different fired-point behaviour 

After many iterations the system approaches a fixed point. We will only be interested 
in this long term dynamics. In the following we examine the behaviour of the different 
typical dynamical equations (13)-( 18) in terms of their fixed points of the retrieval map 
(12). We will consider only loading levels where in the field-free system the basins 
of attraction are already smaller than one. This corresponds t o  an a > aG with 
aG = 0.42 for the Gardner optimized learning rule and an a > ap with ap = 0.38 for 
the pseudo-inverse learning rule. For the following figures we thus take a = 0.5 and 
m, = 0.4. Considering the retrieval behaviour when we start  from an initial overlap 
m,, we will construct retrieval behaviour d i ag ram in the space of loading a and 
external field h. In general, we can consider the retrieval behaviour for an arbi tmy 
initial overlap which may be different from m,. However, our retrieval diagrams do 
not show the general basins of attraction for such general initial conditions. Here for 
each h there is only one output overlap, which is the stable fixed point m* closest to 
mo which can be reached without crossing a n  unstable fixed point. Where necessary, 
the other stable and unstable fixed points a r e  only shown t o  illustrate the structural 
differences between the systems. 

In general, the  optimal learning rules (6) and (8) make perfect retrieval possible at  
the cost of the radius of the basins of attraction. The  Hebb rule however creates very 
wide basins of attraction a t  the expense of reduced retrieval quality. We will show in 
the next three subsections that  in the presence of external fields these statements are 
still valid and, in addition, the basins for perfect retrieval are substantially enlarged, 
making retrieval starting from the initial overlap m, possible. 

3.1.1. The pseudo-inverse rule. As a first example we examine the pseudeinverse 
learning rule. We start  with the case of singular noise (15), since it yields a very rich 
scenario. Figure 1 shows the fixed-point overlap m'(h)  a t  intermediate loading for 
different values of c E {-1,-0.5,0). In this and the following fixed-point diagrams, a 
multiple solution of m* for a given h or a corresponds t o  an alternation of stable and 
unstable fixed points, starting downwards from the highest m' as a stable fixed point. 

The case c = -1 corresponds t o  the one analysed in [ 5 ] .  For h < h, z= 0.25 
we observe that  the strong attractor m' = 1,  which exists for h < = 1 
(a = 0.5), is hidden by an unstable fixed point. For h < h, an increase in h leads 
to a continuous increase of a weaker attractor me,  t o  which the initial overlap m, 
converges. If h exceeds h,  a first-order transition occurs when the weaker attractor 
m' merges with the basin boundary overlap, thus opening up the m' = 1 attractor. 
A further increase in the field beyond h, w 0.45 leads to another first-order transition 
where now, as for small h,  the  perfect attractor is again hidden, leading to an m* 
monotonically decreasing with h. For very large h the fixed-point overlap reaches m, 
(independently of a). The  first barrier for low h can be interpreted as a blocking due 
to the narrowed basin of attraction in the field free case. For high h the blocking takes 
place due to the overemphasis of the erroneous external field. 

The  cwe E = -0.5 is similar to the one just described, only the band [h,, h,] is 
wider, since the proportion of erroneous bits in the hint is smaller compared t o  c = -1. 

The hidden units ( e  = 0) mark an interesting regime. Since the external field does 
not impose errors but only correct hits, we can retrieve perfectly for all h > h, w 0.25, 
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m* 
1 0  

0.8 

0.6 

0.1. 

0.2 

0 
0 0.5 1.0 1.5 2.0 

h 

Figure 1. 
0 = 0 . 5 , m o = 0 . 4 , r = - l  (-), c = - O . 5  (---), e = O  (-.-). 

and m' = 1 is a stable fixed point for all h. In a normal retrieval problem a and m, 
are usually unknown in advance. The absence of the upper band limit h ,  is therefore 
of interest for practical purposes, since i t  facilitates the choice of an appropriate h.  
The hidden unit stimulus is of great importance in pattern association problems where 
those hits which are known to be correct are supported whereas the other (bidden) 
ones receive no stimulus at  all. 

The change in the retrieval diagrams for increasing a can easily be predicted for 
the case of discrete noise. Increasing the load narrows the band of unblocked perfect 
retrieval. At a certain critical loading the band edges merge, leaving an attractor 
behaviour similar to the one for the Hebb rule [4]. 

Figure 2 shows m* for hidden units and different levels of loading. For increasing 
a the h ,  beyond which perfect retrieval is unblocked increases. At a certain value 
ab, which depends on m, (ab ~ i :  0.655 for m, = 0.4), there occurs a phase transition, 
which results in the appearance of an unstable fixed point hiding the strong attractor 
for all h.  This scenario (a > ab) is similar to the one observed by [2] for hidden units. 

Up to now we have only analysed the influence of singular noise. For Gaussian 
noise, the breakdown of the unblocked perfect retrieval regime at high field h is not 
accompanied by the first-order transition at  which an imperfect retrieval phase ap- 
pears discontinuously. Instead there is a continuous weakening of the strong attractor 
(figure 3) which starts to become important a t  about the same h as the first-order 
transition in the case of discrete noise. Thus figure 3 illustrates, and we will support 
this by some other cases, the fact that some phase transitions occuring in syst.ems 
with discrete noise cannot be observed in systems with Gaussian noise, and are due 
to the peculiarities of the discrete noise distribution. 

9.1.2. The Hebb rule. The Hebb rule in the presence of discrete noise has been 
analysed in detail for a DGZ network in [4]. Typical attractor behaviours can be seen 
there for different loading levels and initial overlaps. The main aspect is that for 
intermediate h substantial improvement can be achieved. For intermediate a, ?no 
(e.g. a = 0.5, m, = 0.4) the influences of Gaussian and discrete noise are structurally 
similar. Contrary to the comment in [5J we point out that Hebb networks with discrete 

Fixed points of (12) for the pseudc4inverse rule wil,h singular noise; 
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m e ,  , , , , , , , , , , , , , , , , , , , 

O 0 5  1 0  1 5  2 0  
h 

Figure 2. Fixed points of (12) for the pseudo-inverse rule with hidden units; mD = 
0.4, U = O.S(-), 01 = 0.6 (- - -), U = 0.7 (- . -). Note that m* = 1 is a stable 
fixed point for all these cases. 

h 

Figure 3. Fixed points of (12) for the Gardner 
with Gaussian noise; U = 0.5, mg = 0.4. 

' (-) and pseudo-inverse rule (- 

noise at very low loading also exhibit unstable fixed points, as shown in figure 4 (cf 
also [4], figure 1).  If, however, we apply Gaussian noise in this case we find !,hat the 
first-order transition is replaced by a continuously decreasing curve. As ment,ioned in 
subsection 3.1.1 the appearance of certain first-order transitions is a peculiarity of the 
noise distribution. 

8.1.8. The Gardner rule. For both the case ofdiscrete and Gaussian noise t,he Gardner 
rule gives results which are similar to the ones for the pseudo-inverse rule. Figure 3 
compares the results for the two rules for Gaussian noise. For the Gardner rule and 
discrete noise the strong retrieval attractor exists for a < 2, whereas for the pseudo- 
inverse rule however only for 01 < 1.  Nevertheless the two rules show almost the same 
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0.2 1 
0 I , , , ,  I , , ,  1 1 1 1 , , 1 , , 1  I 

0 1 2 3 4 5 
h 

Figure 4. Fixed points of ( 1 2 )  for the Hehb ru le  with discrete (-) and 
noise (- - -); OL = 0.05, m g  = 0.3. 

Gaussian 

behaviour as the basins of attraction are extremely narrow for high loading 

9.2. Retrieual behaviour diagrams 

In order to illustrate similarities and dissimilarities of the different learning rules, 
we compare here the retrieval behaviours of the systems in the a-h space. Since 
perfect (m' = 1) and almost perfect retrieval lead essentially to the same performance, 
we consider a boundary factor mb which, with an appropriate choice, gives a good 
qualitative guide to the retrieval properties of the system. We thereby distinguish three 
different regimes: strong (s) retrieval (m' > mb), weak (w) retrieval (mb > m* > mu) 
and bad (b) retrieval (m* < mo), where m* is the attractor overlap to which mu 
converges. 

The following figures with mb = 0.9 show these three different performance types in 
the a-h plane. For continuous transitions of the unblocked perfect retrieval phme (e.g. 
cases in figure 3), the strong and weak retrieval regimes are separated by the contour of 
constant attractor overlap mb; for discontinuous transitions of the unblocked perfect 
retrieval phase and, in addition, for the bifurcation overlap at  the transition below mb 
(e.g. cases in figure l),  the strong and weak retrieval regimes are now separated by 
the generic first-order transition line. In this case, the separator of the two regimes is 
insensitive to the choice of mb. 

On the other hand, the separator of the weak and bad regimes is a contour of 
constant attractor overlap mu: it is an arbitrary indication line to provide information 
on the retrieval performance, and is therefore different from a phase transition line. 

Figure 5 compares the results for discrete and Gaussian noise for the pseudo- 
inverse rule. It can be observed that in the absence of h the basins start to shrink for 
(I m 0.4 (mu = 0.4). We also observe that for intermediate fields h ir 0.4 the storage 
can be extended to a maximum a e- 0.5. The shape of the separating curve between 
region (s) and (w) implies that there is only a small band of h values which widen t,he 
basins sufficiently to achieve unblocked perfect retrieval for high loading. The results 
for Gaussian and discrete noises are similar, in that a change in m, results in a shift 
of the curves to the right for increasing mu and to the left for decreasing mu. For the 
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II 

Figure 5. Retrieval phase diagram in the 01 - h s p a  for the pseudo-inverse rule 
with Gaussian (-) and discrete noise (- - -) showing the different regimes (cf text); 
m g  = 0.4. 

case of discrete noise one can easily show that the region of strong retrieval is bounded 
from above by the curve h,(a) = which determines the disappearance of 
the perfect attractor. It should be emphasized that the curve separating strong and 
weak retrieval is in the case of discrete noise a generic phase transition line, and is 
therefore independent of mb provided that mb is not too small. However, in the case 
of Gaussian noise it is merely a performance contour and is dependent on mb. 

Figure 6 shows the result for the Hebb rule with Gaussian noise. We observe that 
now due to the large basins of attraction the band [h, ,  h,] is much wider. On the 
other hand the maximal loading level for strong retrieval is much smaller compared 
to, for example, the Gardner rule. To illustrate the dependence of the boundary value 
mb we give the results for mb = 0.9 and 0.95. 

In figure 6 we also show the results for the pseudo-inverse rule with hidden units. 
Two remarks should be made. First, the upper limit of the band of h giving perfect 
retrieval disappears as implied by figure 2. As a result, the separator between the 
strong and weak regimes (again a generic phase line for sufficiently high mb) becomes 
monotonic in  a-h space. Furthermore, since the strong retrieval regime is completely 
blocked for all h when a exceeds ab = 0.655, this separator approaches the line 
a = 0.655 asymptotically from below as h - CO. Secondly, the maximal a for which 
we can still retrieve perfectly is rather high (0.655, as compared to 0.5 in figure 5). 

Summarizing these results, we conclude that external fields have a very similar 
influence on the network performance independently of the learning rule or the type 
of noise in the stimulus. However, many discontinuous transitions observed in the 
presence of discrete noise disappear when smoother, e.g. Gaussian, distributions are 
applied. 

9.9. Results for optimally adapted retrievers 

Before proceeding, a short comment on the numerical analysis of (23) should be made. 
Since (20), (21) and (23) all depend on m' they need to be solved simultaneously, 
which is a very cumbersome procedure. In order to find m;(a)  we use the following 
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(I 

Figure 6. Retrieval phase diapam in the o-h spare for the Hehh rule with Gaussian 
noise (mb = 0.9 (-),0.95 (- - -)) and for the pseudo-inverse rule with hidden unih 
(- . -) showing the different regimes (cf text) ;  mo = 0.4. 

scheme. We fix h and m' and solve (23) and (20) for y. Once y is found a can 
easily be determined via (21). In  the next step m* is fixed to another value and the 
procedure starts again. As an initial guess the zero temperature retriever curve given 
in 181 (figure 3 therein) is very helpful as it coincides with the present retriever curve 
for h = 0. 

Figure 7 shows m*(a) for different field strengths. Analogously t o  [E] we point out 
that solutions of (23) do not correspond to single retrieval mappings but should be 
seen as attractors of self-adaptation. We are primarily interested in how far one can 
increase the loading aOpt, if we require almcst perfect retrieval with a radius of the 
basins of attraction which is almost one. 

0.8 

0.6 ' '\, 

\ 

0.2 ---__ 
0 

0 0.5 1 0  1 5  2 0  
(I 

Figure 7. Attracton of adaptation for an optimized system (mo = 0.4)  with Gaus 
sian noise and diffwent fields; h = 0 (-), h = 0.2 ( - -  -), h = 0.4 (- , -). 
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O 0 2  O L  0 6  0 8  10 1 2  1 4  

Figure 8. Asymptotic overlap for Hebb ru le  (- 
temperature T = 0.6; o = 0.45, mo = 0.5. 

h 

-) and pseudo inverse (- - -) rule at 

The initial overlap for the example we consider is again taken to be m, = 0.4. We 
observe that for a small field of e.g. h = 0.2 the critical loading can he extended to 
aopt 0.7 and for h = 0.4 to aopt zz 0.75. However we point out that, in the same 
way as mentioned before, high stimulus fields and Gaussian noise tend to lower the 
perfect (m* = 1) attractor of self-adaptation continuously with h. The corresponding 
results for maximally stable networks (MSN, or Gardner rule) yields critical loadings 
where the basins start to shrink a t  aMsN(h  = 0.2) = 0.57 and aMsN(h  = 0.4) = 0.63, 
which are smaller than the ones for the optimally adapted network. 

In conclusion, from our analysis we can say that the principle of adaptation turns 
out to have general utility. Indeed, this principle guarantees that the best performance 
is obtained among the set of all dilute networks [8]. 

3.4. Finite-temperature behaviour 

Finite-temperature dynamics without external fields in dilute neural networks has 
been considered in great detail by [17]. Recent work [8] on optimized neural networks 
showed that in the high-temperature regime Hebbian synapses give the maximum 
storage capacity. These results were obtained in the absence of an external field. Our 
investigations show that this behaviour persists for external fields. Figure 8 shows two 
typical retrieval curves. I t  can be seen that the one for the Hebh rule exceeds the one 
for the pseudo-inverse rule. The noise-optimal behaviour of the Hebb rule makes the 
retrieval with external field more stable against disruptions through noise. 

4. Conclusions 

We have studied the retrieval properties of a highly dilute network trained with very 
general classes of learning rules. We imposed a noisy external stimulus, where also the 
noise distributions were taken from structurally different classes. The radius of the 
basins of attraction is in general widened for intermediate field strengths. For optimal 
learning rules, retrieval is possible even beyond their usual field-free storage limits. 
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Through the application of different types of external noise we could show that cer- 
tain first-order phase transitions occur only for special noise distributions and should 
thus be taken cautiously for general considerations. 

We extended the investigation of [8] to external fields, thus showing that the 
principle of adaptation can he applied successfully to optimize the performance of a 
network. 

The introduction of temperature yielded that the Hebb rule retrieves in the high- 
temperature regime also in the presence of an external field better than other learning 
rules which are more suitable for zero-temperature retrieval, such as the pseudo-inverse 
rule. This is another illustration of the principle of specialization formulated in [E]. 
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